MOSFET中用内部二极管,保护器件免受因连接的电感性负载,产生的反向EMF尖峰的影响。当电感负载与MOSFET漏极接通时,电能立即存储在负载内部,并且在下一个瞬间随着关闭,该存储的EMF从MOSFET源极到漏极,从而导致MOSFET性损坏。在器件的漏源极间存在一个内部二极管,通过允许反电动势尖峰穿过二极管来阻止MOSFET被损坏,保护MOSFET。
每个MOSFET都带有一个内部二极管,该二极管跨接在它们的漏源极引脚之间。二极管阳极与源极相连,而阴极引脚与器件的源极引脚相连。因MOSFET配置在桥接网络中,二极管也配置成基本的全桥整流器网络格式。用几个继电器,实现快速转换,以使电网AC能够通过MOSFET二极管为电池充电。实际上,MOSFET内部二极管,此种桥式整流器网络结构,用单个变压器作为逆变器变压器和充电器变压器的过程简单。
工作原理
截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。
导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面
当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。
MOSFET的开关速度和Cin充放电有很大关系,使用者无法降低Cin,但可降低驱动电路内阻Rs减小时间常数,加快开关速度,MOSFET只靠多子导电,不存在少子储存效应,因而关断过程非常迅速,开关时间在10—100ns之间,工作频率可达100kHz以上,是主要电力电子器件中高的。场控器件静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。
功率MOSFET的设计过程中采取措施使其中的寄生晶体管尽量不起作用。在不同代功率MOSFET中其措施各有不同,但总的原则是使漏极下的横向电阻RB尽量小。因为只有在漏极N区下的横向电阻流过足够电流为这个N区建立正偏的条件时,寄生的双极性晶闸管才开始发难。然而在严峻的动态条件下,因dv/dt通过相应电容引起的横向电流有可能足够大。此时这个寄生的双极性晶体管就会起动,有可能给MOSFET带来损坏。所以考虑瞬态性能时对功率MOSFET器件内部的各个电容(它是dv/dt的通道)都予以注意。瞬态情况是和线路情况密切相关的,这方面在应用中应给予足够重视。对器件要有深入了解,才能有利于理解和分析相应的问题。
功率MOSFET场效应管从驱动模式上看,属于电压型驱动控制元件,驱动电路的设计比较简单,所需驱动功率很小。采用功率MOSFET场效应作为开关电源中的功率开关,在启动或稳态工作条件下,功率MOSFET场效应管的峰值电流要比采用双极型功率晶体管小得多。